

Introducing Computer
Programming

via
Gameboy Advance Homebrew

Gary Kacmarcik
Google (Seattle, WA)

Sylvie Giral Kacmarcik
Whole Earth Montessori School (Bothell, WA)

Introduction

Introduce young students to computer science
and engineering

Target 5th - 8th grade students
● After appropriate level of abstract thinking

– Programming requires abstraction
● Before influence of social stereotypes

– This can impact student's desire to learn
But try to appeal to a much wider audience

Goals

How computers work
● Demystify computers
● Connection between software/hardware
How to program
● Get comfortable with idea of programming
● Ignite spark of interest

Our approach

Motivate students with compelling goal
● Create GBA/NDS game, runs on real device
● “Homebrew” development
Provide real programming environment
● No sandbox or limitations
Connect software with underlying hardware
● Provide context for programming
Enhance “ownership” of programming project

Compelling goal

“Would you like to learn how to create your own
Gameboy Advance/Nintendo DS game?”
Highly motivating for broad range of students
● From pre-K to college (and beyond)
GBA/NDS is first real electronic device
● Not a kid's toy

vs

Complete environment

No restrictions on what you can do
● “Keys to the kingdom”
Important for teenagers
● Easy to recognize playground environment

– Can be de-motivating
● Sensitive to situation where they are not

treated as an adult

Connect software and hardware

GBA is relatively simple
● No OS or VM between program and device
● Manipulate hardware registers
NDS is slightly more complex
● GBA + additional hardware (touchscreen)
Easy to make connection to hardware
● References made throughout class

Enhance ownership

Strongly believe that students should create all
their own graphics
● Important for motivation
● Increased sense of ownership/accomplishment
● Implies that we need to start with 2D

Compare with 3D programming worlds:
● Students forced to rely on pre-generated models

What is “homebrew” software?

Homebrew software is:
● Written for proprietary hardware systems

– Not typically programmable by end-users
– Usually requires official devkit ($$$)

● Created by non-professionals (end-users)
– “Hobbyist” programmers

Homebrew community

Requires:
● Development tools to be created
● The system to be reverse-engineered
● Homebrew community for each system
Tools made available to the community
● For Free
All major systems have a homebrew community
● With varying degrees of success

GBA/NDS homebrew

Mature homebrew community:
● Development tools:

– devkitPro (devkitARM for GBA/NDS)
– Various text editors/IDEs
– Various graphic editing tools

● Emulators:
– GBA: VisualBoyAdvance, no$gba
– NDS: no$gba, DeSmuME, Dualis, iDeaS

GBA/NDS cartridges

Run projects on real hardware
● GBA: SuperCard, MoviePlayer, ...

● NDS: R4, M3, DSTT, CycloDS, DSLinker, ...

Homebrew development flow

Homebrew caveats

Homebrew dev tools are not “friendly”
● Can be difficult to work with at first

– Assume familiarity with command line
● Debugging environment is not ideal
● Not created with elementary students in mind
Once set up, however, it's straightforward
● With one exception:

– Integrating graphics into your game

Graphic editing tools

Lots of 2D tile/map editors and conversion tools
● Mappy, Tiled, gfx2gba, …
Two broad categories:
● General purpose graphical tools

– Need to select options to work on GBA/NDS
● Command line tools:

– gfx2gba -D -fsrc -psprite.pal -t8 sprite.bmp
– grit sprite.bmp -Mw 2 -Mh 4 -gB4 -pe 16 -U16 -ftc

Graphic processing

Problem:
● Need to import graphic files
● Process is error-prone
Solution:
● Create tool specific for task

Spritely

Spritely is a tile/sprite/map editor
● Specifically for GBA/NDS
● Prioritize features for beginner game

developers
● Students cannot make conversion mistakes

Spritely sprite/map editing

Foreground
sprites

Background
maps

Spritely Project Export

Can also export complete GBA/NDS project
● Starter project:

– Draw > Export > Compile > Run
● Used as baseline for their own projects

Spritely Demo

Spritely Tutorials

Programming structured as a series of tutorials:
● Creating a ROM
● Creating and animating objects
● Collisions
● Projectiles & multiple projectiles (arrays)
● Gathering objects
● Levels (including title/game-over screens)
● Pong
● ...

Sample tutorial projects

Sample student projects

Tutorial challenges

Two challenges with tutorials:

● Presenting code
– Best way to present code edits in tutorial

● Keeping the tutorials up-to-date
– Spritely is under development and changing

Presenting code

Students are unfamiliar with editing code
● Need to provide sufficient context

Custom Javascript pretty-printer to add annotations to code:

Keeping tutorials up-to-date

Developing Spritely and tutorials simultaneously
● Feedback to improve program/tutorials

– Restructure generated code
– Add/remove base functionality

Don't break existing tutorials
● Need to constantly validate tutorials
● Easy with 1-2, challenging as you add more
Automated tutorial verification

Class organization

Class was offered as:
● A series of 1 hour classes after school
● ~32 weeks
● Small class size:

– 8 students: 6 girls, 2 boys

Broad range of topics

Pre-programming skills
● Number systems, boolean logic
Digital hardware
● n/p-type MOSFETs, CMOS
● Hardware lab
Basic programming
● Variables, control flow

GBA/NDS Programming

GBA/NDS programming in 2nd half of class
References made to GBA/NDS throughout:
● Number systems

– Draw 8x8 bitmaps and convert base 2 & 16
● Memory

– Show how GBA carts map into upper address
● Hardware

– Disassemble GBA

Programming Project

Lure/trick students into programming
● Start out with basic tutorials
● Continue by drawing sprites/maps for project

– Students invest themselves in project
● Let student drive

– “How can I...?” leads to related tutorial
– Also peer driven “How did you do that?”

Evaluation

Goal is to spark interest in programming
● How do you measure that?
Un-prompted metrics:
● Observed in students without prompting
● Instead of asking if they would recommend the

class, we observe whether or not they did
5 metrics:
● Drop, Recommend, Relate, Debug, Program

Evaluation

5 metrics:
● Drop – Did not complete class = 25%
● Recommend – Recommended class = 63%
● Relate – Related class info outside = 75%
● Debug – Independent debugging = 50%
● Program – Independent programming = 25%
Observed metrics, will tend to under-report

Conclusion
Overall:
● Successful in motivating students
But
● Approach not appropriate for all situations
● Teacher intensive, best with small class size
● Should probably follow visual programming:

– Scratch, Alice, ...
We're releasing tools, tutorials & other materials

Questions?

Spritely and tutorials:
● http://code.google.com/p/spritely

Still under development
We welcome feedback/comments

http://code.google.com/p/spritely

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

