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Introduction

Introduce young students to computer science 
and engineering

Target 5th - 8th grade students
● After appropriate level of abstract thinking

– Programming requires abstraction
● Before influence of social stereotypes

– This can impact student's desire to learn
But try to appeal to a much wider audience



  

Goals

How computers work
● Demystify computers
● Connection between software/hardware
How to program
● Get comfortable with idea of programming
● Ignite spark of interest



  

Our approach

Motivate students with compelling goal
● Create GBA/NDS game, runs on real device
● “Homebrew” development
Provide real programming environment
● No sandbox or limitations
Connect software with underlying hardware
● Provide context for programming
Enhance “ownership” of programming project



  

Compelling goal

“Would you like to learn how to create your own 
Gameboy Advance/Nintendo DS game?”
Highly motivating for broad range of students
● From pre-K to college (and beyond)
GBA/NDS is first real electronic device
● Not a kid's toy

vs



  

Complete environment

No restrictions on what you can do
● “Keys to the kingdom”
Important for teenagers
● Easy to recognize playground environment

– Can be de-motivating
● Sensitive to situation where they are not 

treated as an adult



  

Connect software and hardware

GBA is relatively simple
● No OS or VM between program and device
● Manipulate hardware registers
NDS is slightly more complex
● GBA + additional hardware (touchscreen)
Easy to make connection to hardware
● References made throughout class



  

Enhance ownership

Strongly believe that students should create all 
their own graphics
● Important for motivation
● Increased sense of ownership/accomplishment
● Implies that we need to start with 2D

Compare with 3D programming worlds:
● Students forced to rely on pre-generated models



  

What is “homebrew” software?

Homebrew software is:
● Written for proprietary hardware systems

– Not typically programmable by end-users
– Usually requires official devkit ($$$)

● Created by non-professionals (end-users)
– “Hobbyist” programmers



  

Homebrew community

Requires:
● Development tools to be created
● The system to be reverse-engineered
● Homebrew community for each system
Tools made available to the community
● For Free
All major systems have a homebrew community
● With varying degrees of success



  

GBA/NDS homebrew

Mature homebrew community:
● Development tools:

– devkitPro (devkitARM for GBA/NDS)
– Various text editors/IDEs
– Various graphic editing tools

● Emulators:
– GBA: VisualBoyAdvance, no$gba
– NDS: no$gba, DeSmuME, Dualis, iDeaS



  

GBA/NDS cartridges

Run projects on real hardware
● GBA: SuperCard, MoviePlayer, ...

● NDS: R4, M3, DSTT, CycloDS, DSLinker, ... 



  

Homebrew development flow



  

Homebrew caveats

Homebrew dev tools are not “friendly”
● Can be difficult to work with at first

– Assume familiarity with command line
● Debugging environment is not ideal
● Not created with elementary students in mind
Once set up, however, it's straightforward
● With one exception:

– Integrating graphics into your game



  

Graphic editing tools

Lots of 2D tile/map editors and conversion tools
● Mappy, Tiled, gfx2gba, …
Two broad categories:
● General purpose graphical tools

– Need to select options to work on GBA/NDS
● Command line tools:

– gfx2gba -D -fsrc -psprite.pal -t8 sprite.bmp
– grit sprite.bmp -Mw 2 -Mh 4 -gB4 -pe 16 -U16 -ftc



  

Graphic processing

Problem:
● Need to import graphic files
● Process is error-prone
Solution:
● Create tool specific for task



  

Spritely

Spritely is a tile/sprite/map editor
● Specifically for GBA/NDS
● Prioritize features for beginner game 

developers
● Students cannot make conversion mistakes



  

Spritely sprite/map editing

Foreground
sprites

Background
maps



  

Spritely Project Export

Can also export complete GBA/NDS project
● Starter project:

– Draw > Export > Compile > Run
● Used as baseline for their own projects



  

Spritely Demo



  

Spritely Tutorials

Programming structured as a series of tutorials:
● Creating a ROM
● Creating and animating objects
● Collisions
● Projectiles & multiple projectiles (arrays)
● Gathering objects
● Levels (including title/game-over screens)
● Pong
● ...



  

Sample tutorial projects



  

Sample student projects



  

Tutorial challenges

Two challenges with tutorials:

● Presenting code
– Best way to present code edits in tutorial

● Keeping the tutorials up-to-date
– Spritely is under development and changing



  

Presenting code

Students are unfamiliar with editing code
● Need to provide sufficient context

Custom Javascript pretty-printer to add annotations to code:



  

Keeping tutorials up-to-date

Developing Spritely and tutorials simultaneously
● Feedback to improve program/tutorials

– Restructure generated code
– Add/remove base functionality

Don't break existing tutorials
● Need to constantly validate tutorials
● Easy with 1-2, challenging as you add more
Automated tutorial verification



  

Class organization

Class was offered as:
● A series of 1 hour classes after school
● ~32 weeks
● Small class size:

– 8 students: 6 girls, 2 boys



  

Broad range of topics

Pre-programming skills
● Number systems, boolean logic
Digital hardware
● n/p-type MOSFETs, CMOS
● Hardware lab
Basic programming
● Variables, control flow



  

GBA/NDS Programming

GBA/NDS programming in 2nd half of class
References made to GBA/NDS throughout:
● Number systems

– Draw 8x8 bitmaps and convert base 2 & 16
● Memory

– Show how GBA carts map into upper address
● Hardware

– Disassemble GBA



  

Programming Project

Lure/trick students into programming
● Start out with basic tutorials
● Continue by drawing sprites/maps for project

– Students invest themselves in project
● Let student drive

– “How can I...?” leads to related tutorial
– Also peer driven “How did you do that?”



  

Evaluation

Goal is to spark interest in programming
● How do you measure that?
Un-prompted metrics:
● Observed in students without prompting
● Instead of asking if they would recommend the 

class, we observe whether or not they did 
5 metrics:
● Drop, Recommend, Relate, Debug, Program



  

Evaluation

5 metrics:
● Drop – Did not complete class = 25%
● Recommend – Recommended class = 63%
● Relate – Related class info outside = 75%
● Debug – Independent debugging = 50%
● Program – Independent programming = 25%
Observed metrics, will tend to under-report



  

Conclusion
Overall:
● Successful in motivating students
But
● Approach not appropriate for all situations
● Teacher intensive, best with small class size
● Should probably follow visual programming:

– Scratch, Alice, ...
We're releasing tools, tutorials & other materials



  

Questions?

Spritely and tutorials:
● http://code.google.com/p/spritely

Still under development
We welcome feedback/comments

http://code.google.com/p/spritely
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